## Thor Geology (Ag-Pb-Zn-Au-Cu Deposit)

Thor Geology
Taranis Resources Inc.
John Gardiner – November 2012



## **Location of Thor Property**



## Geology Overview (4 parts)

- Stratigraphic Sequence
- Major Rock Types
- Structural Geology
- "Gold Zones"

### Stratigraphic Sequence

- Relatively simple
- Classic VMS setting along a major transition in stratigraphy
- Profoundly affected by structural geology overprint
- Absence of intrusive or contact metamorphism

# Idealized Stratigraphic column

-No fossils to Indicate Age

-No "top" measurements; therefore the term "Antiform" and "Synform" are used (almost certainly the stratigraphy is upright and not overturned)





#### Lower Carbonaceous Series

- -Typical black color and very phyllitic
- -Conductive
- -Tightly folded similar to overlying assemblages



#### **Tuffaceous Sediments**

- -Always Pistachio Green
- -Intercalated with sediments indicating active volcanism with sedimentation
- -Unit <u>always</u> found in close proximity to sulphide mineralization



## Combined Metals Unit ("CMU")

Three major types of sulphide dominated mineralization.

- 1) "Primary" type mineralization
- 2) Structurally deformed sulfide mineralization
- 3) Quartz-Sulfide Breccia mineralization



Upper "Greywacke Series"

-Tight Folding in Upper Series "Greywacke"

-Boring sedimentary succession



## Structural Geology

- The most complicated part of the geological picture and considerable attention was paid to this in the summer 2012 mapping program.
- CMU is for the most part stratabound. Exceptions are the Quartz-Sulphide Breccia Zones and the  $S_1$ -hosted types of mineralization.
- Mineralization is generally // to bedding in antiform.
- Very similar to Silvercup Ridge area based on Smith&Gehrels, (1992)

#### **Cross-Section Location**





#### **Structural Controls**



# Primary Bedding (S<sub>0</sub>)

-Bedding (S<sub>o</sub>) oriented northwest and folded about northwesttrending fold structures

-Axial plane typically dips to the northeast



# Folding (F<sub>1</sub>)

-Folds plunge at shallow angle to the northwest (~-25 degrees).

-Smaller field of folds that plunge moderately to the southeast, and could indicate "crumple" folds.



# Foliation (S<sub>1</sub>)

-Foliation is aligned to the Northwest, and is typically very steep.

-Foliation is frequently crosscutting primary bedding surfaces.



# How Structure Has Affected The Deposit

- Original sulphide lodes predate ALL of the structures (F<sub>1</sub>, S<sub>1</sub>).
- However The original sulphide lodes have all been profoundly modified by the subsequent folding and "foliation" event.
- This means that the sulphide bodies were originally stratabound – Important implications for exploration!

#### Three Places that Host Mineralization

- High-grade along primary bedding (S<sub>0</sub>)
- Structural-hosted mineralization along S<sub>1</sub> (derived from smearing of S<sub>0</sub> mineralization along S<sub>1</sub>)
- "Scab Zone"-type mineralization found near top of Thor Antiform

#### Primary and Structural Types of Mineralization at Thor



# Structurally-Hosted Gold S<sub>1</sub> Example

-Associated with S<sub>1</sub> surface and strike NW and dip steeply to the east

-Structure traced with ground VLF and EM-37 surveys

-Completely unexplored at Thor



#### SIF Occurrence and Fraser VLF



#### Conclusion

- Significant Resource of Ag-Pb-Zn-Au-Cu that is currently undergoing an NI 43-101 by Roscoe Postle Associates, Inc.
- Simple VMS deposit that has been tightly folded and sheared in places along the limbs of the folds.
- Numerous exploration targets outside of the existing Resource.